DMV-D(LE) 7../622 **Safety Shutoff Valves with Proof of Closure Installation Instructions**

SPECIFICATIONS

DMV-D/622 Two normally closed safety shut off valves in one housing. Fast opening, fast closing. Valve 2 features adjustable max. flow and proof of closure.

DMV-DLE/622 Two normally closed safety shut off valves in one housing. Valve 1 fast opening, fast closing. Valve 2 slow opening, fast closing. Valve 2 features adjustable max. flow, adjustable inital lift and proof of closure.

Body size	Flange Size
DMV-D(LE) 701/622	1/2" - 1" NPT
DMV-D(LE) 702/622	1" - 2" NPT
DMV-D(LE) 703/622	1" - 2" NPT
Gases	

Natural gas, propane, butane, and other noncorrosive gases

Suitable for up to 0.1% by volume, dry H_oS.

Maximum Operating Pressure

7 PSI (500 mbar)

Ambient / Fluid Temperature

-40 °F to +150 °F (-40 °C to +65 °C)

Electrical Ratings

110 to 120 Vac / 50 to 60 Hz 220 to 240 Vac / 50 to 60 Hz 24 Vac / 50 to 60 Hz 24 Vdc

Power Consumption: (Both valves inclusive)

DMV-D(LE) 701: 45 VA DMV-D(LE) 702: 65 VA DMV-D(LE) 703: 90 VA **Electrical Connection**

DIN-Connector with 1/2" NPT conduit adapter

Operating Time

100 % duty cycle

Classification of Valve V1 and V2

Safety Shut Off Valve: UL 429, FM 7400 ANSI Z21.21 • CSA 6.5 C/I Valves

Closing Time (Valve 1 & Valve 2)

< 1 second

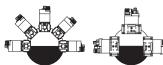
Opening Time

DMV-D/622: V1 & V2 < 1 sec.

DMV-DLE/622: V1 < 1 sec.; V2 10 to 20 sec. at 70 °F Main Flow Setting (DMV-D/622 & DMV-DLE/622)

Adjustable on V2: <10 to 100% of total flow

Initial Lift Adjustment (DMV-DLE/622)


Adjustable on V2: 0 to 70 % of total flow

Materials in contact with Gas

Housing: Aluminum, Steel, free of nonferrous metals. Sealings on valve seats: NBR-based rubber.

Mounting Position

Solenoid upright vertical to solenoid horizontal

Strainer

23 Mesh, installed in the housing upstream V1

Test Port

G 1/8 ISO 228 taps available on both sides; upstream of V1, between V1 and V2, downstream of V2, and on both flanges

Position Indication (optional for valve 1 only)

Visual Indicator

Approvals

UL Recognized Component: File No. MH16727 CSA: Certified File No.157406

FM Approved: ReportJ.1.1Z6A0.AF

Commonwealth of Massachusetts Approved Product

Approval code G1-1107-35

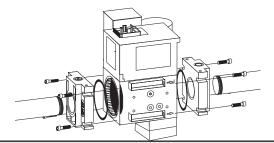
ATTENTION

- Read these instructions carefully.
- Failure to follow them and/or improper installation may cause explosion, property damage and injuries.
- Installation must be done with the supervision of a licensed burner technician.
- Installation must be done with the supervision of a licensed burner technician.
- Check the ratings in the specifications to make sure that they are suitable for your application.
- Never perform work if gas pressure or power is applied. or in the presence of an open flame.

- Once installed, perform a complete checkout including leak testing.
- Verify proper operation after servicing.
- The system must meet all applicable national and local code requirements such as but not limited to the following fuel gas codes: NFPA 54, IFGC (International Fuel Gas Code), or CSA B149.1 (for Canada) or the following equipment codes and standards: CSD-1, NFPA 86, NFPA 37, ANSI Z83.4/CSA 3.7, ANSI Z83.18, ANSI Z21.13/ CSA 4.9, or CSA B149.3 (for Canada).

DMV/622 Installation Manual - 80135 - 01/09

Karl Dungs, Inc.


MOUNTING

Setup

- Examine the DMV-D(LE)/622 for shipping damage.
- The main gas supply must be shut off before starting the installation.
- The inside of the DMV-D(LE)/622, the flanges, and piping must be clean and free of dirt, remove all dirt and debris before installing the DMV-D(LE)/622. Failure to remove dirt/ debris could result in valve damage or improper performance.

Recommended Procedure to Mount the Flanges

- Unpack the DMV-D(LE) 701 (702/703) and remove the 8 M6 (M8) socket cap head screws using a 5 mm (6 mm) Allen wrench.
- Remove the two white protective plastic covers.
- Make sure the O-rings and the grooves are clean and in good condition.
- Install the DMV-D(LE) with the gas flow matching the direction indicated by the arrows on the casting.
- Mount the DMV-D(LE) only with the solenoid vertical upright to horizontal.
- Clean the mounting surface of the flanges. Make sure they are in good condition.
- Attach the DMV-D(LE) to the flanges using the M6 (M8) socket cap screws supplied.

- Use a 5mm Allen wrench for the DMV-D(LE) 701.
- Use a 6mm Allen wrench for the DMV-D(LE) 702/703.
- Tighten the screws in a crisscross pattern.
- Do not overtighten the screws. Follow the maximum torque values below.

Recommended Torque

M6	M8	Screw Size
62	134	[lb-in]

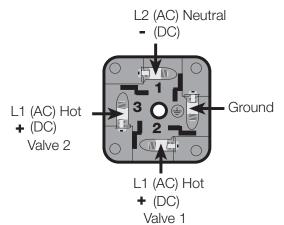
Recommended Piping Procedure

- Use new, properly reamed and threaded pipe.
- Apply good quality pipe sealant, putting a moderate amount on the male threads only. If pipe sealant lodges on the valve seat, it will prevent proper operation. If using LP gas, use pipe sealant rated for use with LP gas.
- Do not thread pipe too far. Valve distortion and/or malfunction may result from excess pipe in the valve body.
- Apply counter pressure only a parallel jaw wrench only to the flats on the flange when connecting to pipe.
- Do not overtighten the pipe. Follow the maximum torque values listed below.

Recommended Torque for Piping

1/2"	3/4"	1"	1-1/4"	1-1/2"	2"	NPT pipe
375	560	750	875	940	1190	[lb-in]

• After installation is complete, perform a leak test.


If the flow is not in the same direction of the arrows the valves will not operate properly.

WIRING

Wiring the DMV/622

- Disconnect all power to the valves before wiring to prevent electrical shock and equipment damage.
- Do not exceed the electrical ratings given in the specifications and on the valve.
- Attach a flexible 1/2" NPT conduit to the DIN connector.
- Route the wires through the conduit and the DIN connnector.
- Use 14 or 16 guage wire for at least 75°C (167°F).
- Connect the wiring to the appropriate screw terminals in the DIN connector.
- Plug the DIN connector into the AMP terminals. Fasten the DIN connector with the screw supplied.

DIN Connector screw terminal connections

CAUTION: All wiring must comply with local electrical codes, ordinances and regulations.

PAINTING VALVE

- It is not recommended that this valve be painted. Painting covers date codes and other labels that identify this valve.
- If the valve needs to be painted, a paint free of volitile organic componants (VOC's) must be used. VOC's can damage valve o-rings, resulting in external gas leakage over time.
- During the painting process, use measures that will allow the valve's date code and other labeling information to be legible after the paint is dry.

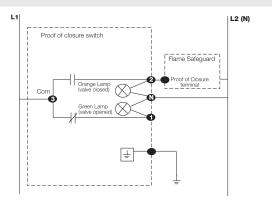
PROTECTION FROM RADIANT HEAT

- Radiant heat must be considered as a heat source that could result in an ambient temperature higher than the rating of this valve.
- Provide propor shielding to protect against radiant heat.

PROOF OF CLOSURE SWITCH

Location

The proof of closure switch is factory installed on valve 2 of the DMV, it visually and electrically indicates valve position. When the valve is closed (NO position) an orange light is visible, when the valve is open (NC position) a green light is visible.


Conduit Connection

- Before connecting conduit to the proof of closure switch, position the proof of closure switch so that there is no torque from the wiring or conduit. If the switch needs to be rotated, loosen the slotted set screw on the side. The switch may be removed from the brass adapter for wiring, however, **DO NOT** turn the proof of closure switch after tightening the slotted set screw.
- Tighten the slotted set screw so that the proof of closure switch housing is secure. (16 lb-in torque)

Wiring

- Do not exceed the electrical ratings given in the proof of closure switch specifications.
- Use 14 or 16 guage wire for at least 75°C (167°F).
- Connect wire to the appropriate terminal of the proof of closure switch (see the wiring diagram).
 COM to the L1, Ground to ground, NO to the Proof of Closure terminal of the Flame Safeguard and N to L2.
 The ORANGE light shall be on when the valve is closed, The GREEN light shall be on when the valve is open (FM requirement).

Do not wire the valve switch to close a circuit that will directly power another safety shutoff valve. Doing so could result in a safety valve being energized and opened rather than remaining closed.

Annual Testing

- Perform a switch continuity test at least annually to verify that the proof of closure switch is working properly.
- Make sure that there is no power to the proof of closure switch.
- Shut the upstream ball valve to stop the flow of gas into the valve train.
- With the valve de-energized, use a multimeter and verify that there is continuity between the switch contacts 3 (COM) and 2 (NO). Then verify that there is no continuity between the switch contacts 3 (COM) and 1 (NC).
- Energize the valve that the proof of closure switch is mounted to. Use a multimeter and verify that there is continuity between the switch contacts 3 (COM) and 1 (NC). Then verify that there is no continuity between the switch contacts 3 (COM) and 2 (NO).
- If you experience a problem, contact DUNGS.
- De-energize the valve and replace the cover on the proof of closure switch.
- Open the upstream ball valve.

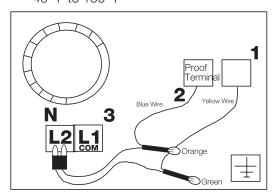
Proof of Closure Switch Specifications Switch

SPDT

Switch Action

Valve open: Switch in NC position, Green light on. Valve closed: Switch in NO position, Orange light on.

Contact Rating


10 A res, 8 FLA, 48 LRA @120 Vac

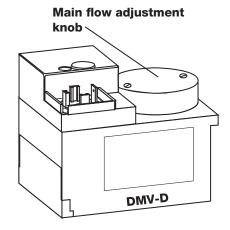
Enclosure

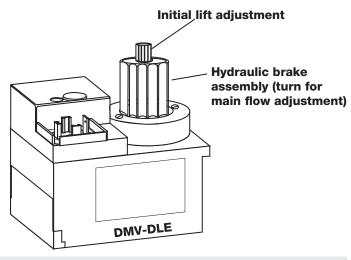
NEMA Type 4

Ambient/Fluid Temperature

-40° F to 150° F

VALVE ADJUSTMENT


Flow Setting


- The valves are factory set with the flow adjustment fully open.
- CAUTION: Make sure the flow of gas does not create a hazard.
- Locate the flow adjustment on top of valve 2 on the DMV-D/622 (black knob) DMV-DLE/622 (base of the hydraulic brake). There are two screws, the holding screw is recessed and has a blue sealing compound on it, while the pan head screw protrudes from the cap.
- Loosen the pan head screw until you can freely rotate the flow adjustment.
- Turn clockwise for less gas or counterclockwise for more gas.
- Check the flow at the burner with an orifice or flow meter.
- Tighten the pan head screw on the adjustment cap.

Initial Lift Adjustment (DMV-DLE/622 only)

The initial lift adjustment varies the initial gas flow through the valve as the valve seat begins to open. This adjustment can vary the initial flow between 0% and 70% of the total gas flow; 0 to 25% of stroke. All DMV-DLE/6 valves are factory set with no initial lift. To adjust the lift proceed as follows:

- Unscrew the small black cap on top of the flow adjustment cap to expose the initial lift adjustment knob.
- The black cap also serves as tool; turn the cap over and insert it on the slot on the adjustment knob.
- Turn the knob clockwise for a min. initial lift or counterclockwise for a max. initial lift.
- Once the desired initial fast lift has been achieved, reinstall the black cap.

Do not adjust or remove any screws or bolts which are sealed with a Red or Blue colored compound. Doing so will void all approvals and warranties.

TEST PORTS

Test Ports

The G 1/8 ISO 228 taps are available on both sides upstream V1, between V1 and V2, downstream V2, and on both flanges. The G 1/8 test nipple (P/N 219-008) can be screwed in any of these pressure tap ports.

VALVE LEAKAGE TEST

This leak test procedure tests the external sealing and valve seat sealing capabilities of the DMV automatic safety shutoff valve. Only qualified personnel should perform this test.

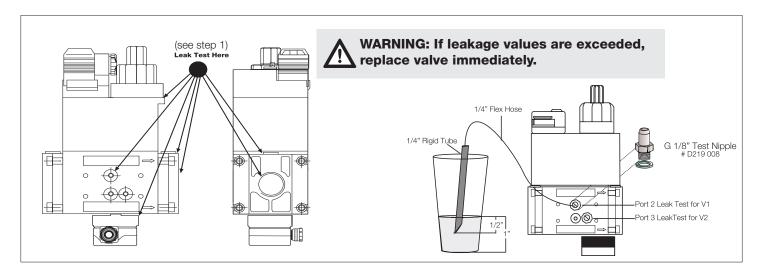
It is required that this test be done on the initial system startup, and then repeated at least annually. Possibly more often depending on the application, environmental parameters, and the requirements of the authority having jurisdiction.

SETUP

This test requires the following:

- A) Test nipples installed in the downstream pressure tap port of each automatic safety shutoff valve to make the required 1/4" hose connection in step 4.
- B) A transparent glass of water filled at least 1 inch from the bottom.
- C) A proper leak test tube. An aluminum or copper 1/4" rigid tube with a 45° cut at the end that is then connected to a 1/4" flexible hose of some convenient length provides for a more accurate leakage measurement. However, a 45° cut at the end of the 1/4" flexible hose will suffice, but it will not likely be as accurate as the rigid tube.
- D) For detecting external leakages, an all purpose liquid leak detector solution or a soapy water solution is required.

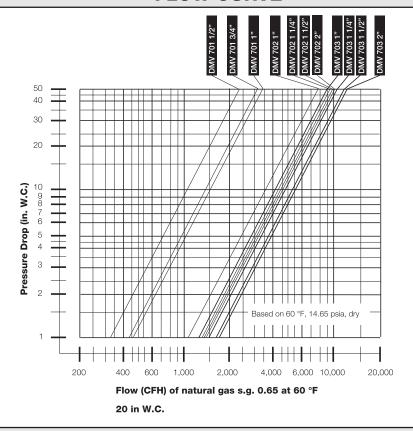
LEAK TEST PROCEDURE


Use the illustration below as a reference.

1. With the upstream ball valve open, the downstream ball valve closed and both valves energized, apply an all purpose liquid leak detector solution to the "External Leakage Test Areas" indicated in the illustration below, to any accessories mounted to the safety valve, and to all gas piping and gas components downstream the equipment isolation valve, and the inlet and outlet gas piping of the automatic safety shutoff valve. The presence of bubbles

- indicates a leak, which needs to be rectified before proceeding.
- 2. Then, de-energize the burner system and verify that both automatic safety shutoff valves are closed.
- 3. Close the upstream and downstream manual ball valve.
- 4. Using a screwdriver, slowly open the V1 test nipple (port 3) by turning it counter clockwise to depressurize the volume between the two valves, and connect the 1/4" flexible hose to the test nipple.
- 5. Slowly open the upstream manual ball valve, and then provide for some time to allow potential leakage to charge the test chamber before measuring the valve seat leakage.
- 6. Immerse the 1/4 in. tube vertically 1/2 in. (12.7 mm) below the water surface. If bubbles emerge from the 1/4" tube and after the leakage rate has stabilized, count the number of bubbles appearing during a 10 second period. (See chart below for allowable leakage rates.)
- 7. Repeat the same procedure for valve V2 (port 3). (Energize terminal 2 on the DIN connector to open valve 1).

After completing the above tests proceed as follows:


- 8. Verify that the downstream manual ball valve is closed, and both automatic safety shutoff valves are de-energized.
- 9. Remove the flexible hose, and close all test nipples.
- 10. With the upstream manual ball valve open, energize both automatic safety shutoff valves.
- 11. Use soapy water to leak test all test nipples to ensure that there are no leaks.
- 12. If no leakage is detected, de-energize all automatic safety shutoff valves, and open the downstream manual ball valve.

Туре	Allowable Valve Seat Leakage*	# of Bubbles in 10 se		sec		
	up to 7 PSI inlet	AIR	Natural Gas	LP		
DMV D(LE) 701/	322 239 cc/hr	5	6	4		
DMV D(LE) 702/	622 464 cc/hr	9	11	7		
DMV D(LE) 703/	622 464 cc/hr	9	11	7		
					,	

*Based on air, and test conditions per UL 429 Section 29. (Air or inert gas at a pressure of 1/4 psig and also at a pressure of one and one-half times maximum operating pressure differential, but not less than 1/2 psig. This test shall be applied with the valve installed in its intended position.) Volume of bubble defined in Table 2 of FCI 70-2-1998.

FLOW CURVE

PRESSURE DROP FOR OTHER GASES

To determine the pressure drop when using a gas other than natural gas, use the flow formula below and f value located in the chart below to determine the "corrected" flow rate in CFH through the valve for the other gas used. For example, when using propane, divide the volume (CFH) of propane required for the application by the calculated value f (f = 0.66 for propane). Use this "corrected" flow rate and the flow curve above to determine pressure drop for propane.

$$\overset{\circ}{V}_{gas \ used} = \overset{\circ}{V}_{Natural \ Gas} \times f$$

Use this formula to calculator the f factor for other gases not listed on the table.

Type of gas used	Density [kg/m³]	sg	f
Natural gas	0.81	0.65	1.00
Butane	2.39	1.95	0.58
Propane	1.86	1.50	0.66
Air	1.24	1.00	0.80

REPLACEMENT PARTS						
Coil for:	Mag. Type	Part # for 120Vac	Part # for 24Vac	Part # for 24Vdc		
DMV-D(LE) 701/622	1111	232-401	238-554	238-829		
DMV-D(LE) 702/622	1211	232-402	238-825	238-826		
DMV-D(LE) 703/622	1212	232-403	238-822	238-823		
Printed Wiring Board						
DMV-D(LE) 701/622		238-803	238-803	238-804		
DMV-D(LE) 702/622		238-806	238-806	238-807		
DMV-D(LE) 703/622		238-806	238-806	238-807		
Electrical DIN Connector 210-319						
PG 11-1/2 NPT Adapt	ter 220-566		•	224-093 for DMV 701		
M20- 1/2 NPT Adapte	er 240-671		e bolts and two orings)	224-094 for DMV 702 or DMV 703		
Visual Indicator	217-665			240-458 for DMV 701, 2, and 3.		
Valve switch CPI 400	224-253	A Main Flow A	dj. Knob	240-457 for DMV 701, 2, and 3.		